Question		Answer	Marks	Guidance	
1		$\begin{aligned} & \mathbf{M}^{-1}=\frac{1}{108}\left(\begin{array}{ll} 21 & 3 \\ -8 & 4 \end{array}\right) \\ & \frac{1}{108}\left(\begin{array}{cc} 21 & 3 \\ -8 & 4 \end{array}\right)\binom{1}{3}=\binom{\frac{5}{18}}{\frac{1}{27}} \\ & x=\frac{5}{18}, y=\frac{1}{27}, \text { oe } \end{aligned}$	$\begin{gathered} \hline \text { M1* } \\ \text { M1* } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1dep* } \\ \\ {[6]} \end{gathered}$	Attempt to find \mathbf{M}^{-1} or $108 \mathbf{M}^{-1}$ Divide by their determinant, Δ, at some stage Correct determinant, (A0 for det $\mathbf{M}=\frac{1}{108}$ stated, all other marks are available) Attempt to pre-multiply by inverse or by $\Delta \mathbf{M}^{-1}$ Correct matrix multiplication (allow one slip) For both, cao x and y must be specified, may be in column vectors SC answers only B1	
	OR				
		$\begin{gathered} 4 x-3 y=1 \\ 8 x+21 y=3 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using \mathbf{M} to create two equations Correct equations	
		Eliminating x or y	M1	Any valid method	
		Finding second unknown	M1	Valid method	
		$x=\frac{5}{18}, y=\frac{1}{27}$ Allow 3 dp or better.	A1A1	For each cao. SC Answers only B1	
			[6]		
2		$2+3 \mathrm{j} \text { and } 2-3 \mathrm{j}$ Modulus $=\sqrt{\left(2^{2}+3^{2}\right)}=\sqrt{13}$ Argument $= \pm \arctan \left(\frac{3}{2}\right)= \pm 0.983$ $2+3 \mathrm{j}$ has modulus $\sqrt{13}$ and argument 0.983 $2-3 \mathrm{j}$ has modulus $\sqrt{13}$ and argument -0.983	B1 M1 M1 A1ft A1ft [5]	For both, accept $2 \pm 3 \mathrm{j}$ Attempt at modulus of their complex roots Attempt at $\arctan \left(\pm \frac{3}{2}\right) \mathrm{ft}$ their complex roots Moduli specified, ft their roots. Accept $\sqrt{ } 13$ only ft their roots - must be in $\left(-\pi, \pi\right.$] Accept $\pm 0.983, \pm 56.3^{\circ}$ If 2 sf given accuracy MUST be stated.	

Question		Answer	Marks	Guidance	
4	(i)	Accept un-numbered evenly spaced marks on axes to show scale +	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & {[2]} \\ & \hline \end{aligned}$	Line at acute angle, all or part in $\operatorname{Im} \mathrm{z}>0$ Half line from $-1-\mathrm{j}$ through 0 [don't penalise if point $-1-\mathrm{j}$ is included] Allow near miss to 0 if $\pi / 4$ marked SC correct diagram, no annotations seen B1 B0	
4	(ii)	$3-$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Circle centre $1+2 \mathrm{j}$ Radius 2 Must touch real axis SC correct diagram, no annotations seen B1 B0	
4	(iii)		B1 B1 [2]	The shaded region must be outside their circle and have a border with the circumference Fully correct SC correct diagram, no annotations seen allow B1 B1	
5	(i)	$\begin{aligned} & \sum_{r=1}^{n}(2 r-1)=2 \sum_{r=1}^{n} r-n \\ & =n(n+1)-n=n^{2} \end{aligned}$	M1 A1	Attempt to split into two sums (May be implied) Use of standard result for Σr cao (must be in terms of n) SC Induction: B1 case $n=1$: E1 sum to $k+1$ terms correctly found : E1 argument completely correct	
5	(ii)	$\begin{aligned} & \frac{\sum_{r=1}^{n}(2 r-1)}{\sum_{r=n+1}^{2 n}(2 r-1)}=\frac{n^{2}}{(2 n)^{2}-n^{2}} \\ & =\frac{n^{2}}{3 n^{2}}=\frac{1}{3}=k \end{aligned}$	M1 M1 A1 A1 [4]	Use of result from (i) in numerator of a fraction Expressing denominator as $\sum_{r=1}^{2 n} \ldots-\sum_{r=1}^{n} \ldots$. need not be explicit, or other valid method. Correct sums $k=\frac{1}{3}$	

Question		Answer	Marks	Guidance	
6		$u_{1}=3 \text { and } \frac{3^{1-1}+5}{2}=3, \text { so true for } n=1$ Assume true for $n=k$ $\begin{aligned} & \Rightarrow u_{k}=\frac{3^{k-1}+5}{2} \\ & \Rightarrow u_{k+1}=3\left(\frac{3^{k-1}+5}{2}\right)-5 \\ & =\frac{3^{k}+15}{2}-5 \\ & =\frac{3^{k}+15-10}{2} \\ & =\frac{3^{k}+5}{2} \\ & =\frac{3^{n-1}+5}{2} \text { when } n=k+1 \end{aligned}$ Therefore if true for $n=k$ it is also true for $n=k+1$. Since it is true for $n=1$, it is true for all positive integers, n.	B1 E1 M1 A1 E1 E1 [6]	Must show working on given result with $n=1$ Assuming true for k Allow "Let $n=k$ and (result)" "If $n=k$ and (result)" Do not allow " $n=k$ " or "Let $n=k$ ", without the result quoted, followed by working u_{k+1} with substitution of result for u_{z} and some working to follow Correctly obtained Or target seen Both points explicit Dependent on A1 and previous E1 Dependent on B1 and previous E1	
7	(i)	Asymptotes: $y=3$, $x=2, x=-1$ Crosses axes at $(0,3)$ $\left(\frac{-2}{3}, 0\right),(3,0)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	(both) Allow $x=2,-1$ Must see values for x and y if not written as co-ordinates (both) Must see values for x and y if not written as coordinates.	
			[4]		

Question		Answer	Marks	Guidance	
7	(ii)	 When x is large and positive, graph approaches $y=3$ from below, e.g. for $x=100, \quad \frac{302 \times 97}{98 \times 101}=2.9 \ldots$ When x is large and negative, graph approaches $y=3$ from above, e.g. for $x=-100, \frac{-298 \times-103}{-102 \times-99}=3.03 \ldots$	B1 B1 B2 B1 [5]	Intercepts labelled (single figures on axes suffice) Asymptotes correct and labelled. Allow $y=3$ shown by intercept labelled at $(0,3)$ and $x=2$ and $x=-1$ likewise Three correct branches (-1 each error) Any poorly illustrated asymptotic approaches penalised once only. Approaches to $y=3$ justified There must be a result for y	
7	(iii)	$y \geq 3 \Rightarrow 0 \leq x<2$ or $x<-1$	$\begin{gathered} \text { B1 } \\ \text { B1B1 } \\ {[3]} \\ \hline \end{gathered}$	$x<-1$ $0 \leq x<2$ (B 1 for $0<x<2$ or $0 \leqq x \leqq 2$) isw any more shown	

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & (5+4 j)^{2}=(5+4 j)(5+4 j)=25+40 j-16=9+40 j \\ & (5+4 j)^{3}=-115+236 j \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Use of $\mathrm{j}^{2}=-1$ at least once	
8	(ii)	$\begin{aligned} & \alpha^{3}+q \alpha^{2}+11 \alpha+r=0 \\ & \Rightarrow-115+236 \mathrm{j}+9 q+40 q \mathrm{j}+55+44 \mathrm{j}+r=0 \\ & \Rightarrow(236+40 q+44) \mathrm{j}=0 \quad, \quad-115+9 q+55+r=0 \\ & \Rightarrow q=-7 \\ & \Rightarrow r=123 \end{aligned}$	M1 M1 A1ft A1ft [4]	Substitute for α Compare either real or imaginary parts $q=-7 \mathrm{ft}$ their α^{2} and α^{3} $r=123 \mathrm{ft}$ their α^{2} and α^{3}	
8	(iii)	$\mathrm{f}(z)=z^{3}-7 z^{2}+11 z+123$ Sum of roots $=7$ $\begin{aligned} & \Rightarrow(5+4 \mathrm{j})+(5-4 \mathrm{j})+w=7 \\ & \Rightarrow w=-3 \end{aligned}$ Roots are $5+4 \mathrm{j}$ and $5-4 \mathrm{j}$ and -3	M1 B1 A1 [3]	Valid method for the third root. (division, factor theorem, attempt at linear x quadratic with complex roots correctly used) quoted cao real root identified, A0 if extra roots found	
8	(iv)	$\begin{aligned} & z \mathrm{f}(z)=\mathrm{f}(z) \Rightarrow(z-1) f(z)=0 \\ & \Rightarrow z=1 \text { or } \mathrm{f}(z)=0 \\ & \Rightarrow z=1, z=-3, z=5+4 \mathrm{j}, z=5-4 \mathrm{j} \end{aligned}$	M1 A1ft [2]	solving $z-1=0$, and $f(z)=0$ (may be implied) For all four solutions [ft (iii)] NB incomplete method giving $\mathrm{z}=1$ only is M0 A0	

Question			Answer	Marks	Guidance	
9	(i)		$\begin{aligned} & \left(\begin{array}{cc} 1 & -2 \\ 3 & 0 \end{array}\right)\left(\begin{array}{lll} 0 & 0 & 4 \\ 0 & 2 & 1 \end{array}\right) \\ & =\left(\begin{array}{ccc} 0 & -4 & 2 \\ 0 & 0 & 12 \end{array}\right) \\ & \mathrm{A}^{\prime}=(0,0), \mathrm{B}^{\prime}=(-4,0), \mathrm{C}^{\prime}=(2,12) \end{aligned}$	M1 A1 Alft [3]	Any valid method - may be implied Correct position vectors found (need not be identified) co-ordinates, ft their position vectors $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ identifiable. Coordinates only, M1A0A1	
9	(ii)		M represents a two-way stretch factor 4 parallel to the x axis factor 2 parallel to the y axis	$\begin{gathered} \text { B1 } \\ \text { B1 B1 } \\ \text { [3] } \end{gathered}$	Stretch. (enlargement B0) Directions indicated	
9	(iii)		$\begin{aligned} & \left(\begin{array}{ll} 4 & 0 \\ 0 & 2 \end{array}\right)\left(\begin{array}{cc} 1 & -2 \\ 3 & 0 \end{array}\right) \\ & =\left(\begin{array}{cc} 4 & -8 \\ 6 & 0 \end{array}\right) \end{aligned}$ Represents the composite transformation T followed by M $\left(\begin{array}{cc}4 & -8 \\ 6 & 0\end{array}\right)^{-1}=\frac{1}{48}\left(\begin{array}{cc}0 & 8 \\ -6 & 4\end{array}\right)$ represents the single transformation	M1 A1 A1 [3]	Attempt at MT in correct sequence cao cao	
		OR	$\frac{1}{6}\left(\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right) \quad \frac{1}{8}\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right)=\frac{1}{48}\left(\begin{array}{cc}0 & 8 \\ -6 & 4\end{array}\right)$	$\begin{array}{r} \mathrm{B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ {[3]} \end{array}$	for T^{-1} and M^{-1} correct for attempt at $\mathrm{T}^{-1} \mathrm{M}^{-1}$ cao	
		OR	$\begin{aligned} & \left(\begin{array}{ccc} 0 & -16 & 8 \\ 0 & 0 & 24 \end{array}\right) \text { whence }\left(\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)\left(\begin{array}{ccc} 0 & -16 & 8 \\ 0 & 0 & 24 \end{array}\right)=\left(\begin{array}{lll} 0 & 0 & 4 \\ 0 & 2 & 1 \end{array}\right) \\ & \Rightarrow\left(\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)=\frac{1}{48}\left(\begin{array}{cc} 0 & 8 \\ -6 & 4 \end{array}\right) \end{aligned}$	M1 A1 A1 [3]	Finding $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$ coordinates or position vectors For correct position vectors Inverse matrix correctly found	

Question			Answer	Marks	Guidance	
9	(iv)		Area scale factor $=48$ $\begin{aligned} & \text { Area of triangle } \mathrm{ABC}=4 \text { square units } \\ & \text { Area of triangle } \mathrm{A}^{\prime \prime \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}}=48 \times \text { area of triangle } \mathrm{ABC} \\ & \\ & =192 \text { (square units) } \end{aligned}$	B1 M1 A1 [3]	Using their " 48 " and their area of triangle ABC , correct triangle Or other valid method cao	
		OR	Finding $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}(0,0)(-16,0)(8,24)$ and using them Finding the area of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ Area of triangle $=192$ (square units)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	A" B" C" may be in (iii) Any valid method attempted cao (possibly after rounding to 3 sf)	

